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Pointed bubbles in slow viscous flow 
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Inviscid bubbles confined by the slow axisymmetric straining motion of a very 
viscous fluid are considered for the case when the surface tension is weak. The 
shape of the bubbles is determined using slender-body theory, and it is found that 
these bubbles have pointed ends, in agreement with well-established experi- 
mental results. The description obtained is invalid within exponentially small 
neighbourhoods of the ends and a local analysis suggests that the tips are cusp- 
like. In both the description of the major portion of the bubble and of the ends, 
there is an apparent non-uniqueness because a certain parameter can take on 
a countably infinite number of values. This non-uniqueness is not resolved. 

1. Introduction 
Inviscid bubbles immersed in a viscous fluid, if strained sufficiently, often 

exhibit pointed ends. Thus Taylor (1934) subjected bubbles to a corner flow and 
found that, a t  sufficiently high rates of strain, hitherto smooth bubbles abruptly 
developed pointed ends. Similar experiments were carried out by Rumscheidt & 
Mason in 1961 and confirmed this phenomenon. At a less sophisticated level the 
kitchen experimenter can easily convince himself of the reality of pointed bubbles 
with the aid of a bottle of syrup. 

Despite this unambiguous experimental evidence little attempt has been made 
to describe such bubbles theoretically. Thus the basic aim of the present paper 
is to determine whether or not pointed bubbles can be described within the 
framework of the slow-flow (inertialess) equations. Ideally, we should like to 
model exactly the experimental situation of both Taylor and Rumscheidt & 
Mason, comparing the theoretical predictions with their experimental observa- 
tions. Unfortunately, in these experiments the undisturbed flow far from the 
bubble was two-dimensional, so that the flow in the neighbourhood of the bubble 
was genuinely three-dimensional and its mathematical description presents con- 
siderable difficulty. In searching for simpler flows, which might model the ex- 
periments in a qualitative fashion, we are naturally led to consider either 
two-dimensional bubbles immersed in a two-dimensional flow or axisymmetric 
bubbles. In  the former case a pointed interface will have a discontinuous tangent 
along a line in three-space whereas in the latter the discontinuity will be confined 
to a point. Since the experimentally generated bubbles have point discon- 
tinuities, rather than edge discontinuities, it might be expected that axisym- 
metric bubbles will model the experiments more faithfully. Richardson (1968) 
has discussed the possibility of angular interfaces for two-dimensional bubbles 

25 F L M  5 5  



386 J. D. Buckmaster 

and shown that such discontinuities, if they exist, must be genuine cusps (rather 
than being wedge-shaped). He points out that if the surface tension is not zero 
there is, associated with an edge discontinuity, a finite force acting on the 
surrounding fluid of magnitude 2T per unit length (T being the surface tension). 
There is no such force in the case of a point discontinuity, so two-dimensional 
bubbles are completely unrepresentative of experimentally realizable drops as 
far as tangent discontinuities are concerned. For this reason we confine our 
attention to axisymmetric bubbles. 

FIGURE 1. Axisymmetric bubble. 

Figure 1 shows the physical situation which we wish to describe mathematic- 
ally. Under the influence of the straining motion the bubble tends to be squeezed 
out along the z axis (the axis of symmetry). Complete collapse is prevented by 
surface tension effects, for, the more slender the bubble, the greater is the jump 
in normal stress across its boundary. Consequently, if the surface tension is 
small (for an O(1) straining flow), the bubble will be slender and the whole 
apparatus of slender-body theory can be used. A programme along these lines 
was proposed by Taylor (1964)t but has apparently never been developed. He 
gives an approximate analysis, the results of which are correct as far as they go, 
but the work is not mathematically systematic and some interesting and im- 
portant features of the analysis are not revealed. Note that if the bubble is 
pointed it is the interface curvature in planes z = constant that gets larger as the 
bubble is squeezed, and so provides the resistance to collapse. The curvature in 
planes of constant azimuth decreases. This supplies another reason for not 
looking at two-dimensional pointed bubbles, since there is clearly nothing to 
prevent them being squeezed into flat sheets. 

-f I am grateful t o  a referee for bringing this work to my attention. 
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Slender-body theory generates what is essentially a power series in the surface 
tension for the bubble shape. The leading term in this series describes pointed 
bubbles with conical ends, in apparent agreement with experiment. However, 
subsequent terms contain logarithms, suggesting the presence of non-uniformity 
within a distance from the ends of O[exp ( -  1/e2)], where e is the thickness ratio 
of the bubble. The failure ofa local analysis near a conical end provides additional 
evidence of this non-uniformity. Unfortunately, a description of the bubble in 
these exponentially small regions has not been obtained, so that we are reduced 
to speculation about what happens there. In this respect the experimental 
observations are of little help; for all the experimental bubbles exhibiting 
pointed ends, B is significantly less than one (roughly a third or smaller) so that 
these exponentially small regions are not distinguishable. 

There are two obvious possibilities for the behaviour very near the ends. It is 
conceivable that the shape is unsteady, possibly as the result of an instability. 
Rumscheidt & Mason refer to the shedding of small bubbles from the ends, 
although it is not clear that this always occurred and, indeed, Taylor’s description 
implies the existence of steady pointed bubbles under some circumstances. 
Another possibility is that there is a steady shape and the exponentially small 
regions provide a transition from the conical shape of the outer solution to some 
other shape at  the very ends themselves. A necessary condition for this to be 
true is the existence of a local solution in the immediate vicinity of the end, and 
it is shown that such a descriptionis possible if the ends are cusp shaped. It 
certainly cannot be concluded that such cusps are a reality, only that they are 
a possibility. Another possibility, of course, is that the ends are actually rounded. 
It should be emphasized that we do not champion cusped ends. The basic concern 
is with the demonstration that the inertialess equations do admit pointed solu- 
tions ‘in the large’ in agreement with experiment. However, since the non- 
uniformity calls this analysis into question, it seems necessary to provide at  
least one plausible resolution of the difficulty. The true resolution must pre- 
sumably await a careful analysis of the flow near the ends, but how this can be 
done is not clear. 

The bubble shapes obtained, both in the large and locally, near the ends, are not 
unique. For a given straining flow and surface tension there is a, one-parameter 
family of possible bubble shapes in which the parameter can equal any positive 
even integer.? No criterion for choosing this parameter has been established, so 
this problem joins a long list of non-unique free-boundary problems awaiting 
clarification. The present non-uniqueness is of special interest, however, since 
the author is not aware of any other steady non-unique slow viscous flows. The 
present work suggests that it would be futile to try and extend the uniqueness 
results of Keller, Rubenfeld & Molyneux (1967) to general free-surface flows. 

the local solution provides additional evidence that the cusped shapes are significant. 
The striking similarity between the non-uniqueness of the solution in the large and in 

2 5 - 2  



388 J . D . Buckmaster 

2. Formulation and leading solution 
The Reynolds number is assumed to be so small that the inertia terms can be 

neglected. The equations of motion are then the axisymmetric Stokes flow 
equations: 

i a  8% 
r ar ax 

0 = -- (rv,.) +-, 

where 

aP 0 = - - ax +,uAv,, 

These equations admit a solution 

vz = Cx, vr = - @ r ,  P =Pa, (2.2) 

where C and pa are constants, and we choose this as the undisturbed flow far 
from the bubble. If C is positive this corresponds to the flow sketched in figure 1. 
The only difference between this and one of the experimental configurations of 
Taylor is that in Taylor's work the far field is two-dimensional. 

The bubble is assumed to be slender and described by 

r = sR(z), (2.3) 

where 8 < 1.  The disturbance due to the bubble is then represented by a dis- 
tribution of irrotational sources and Stokeslets along the z axis between -a  and 
a (the limits of the bubble in the x direction). If the bubble were rounded the 
singularities would not extend all the way to the ends, but for pointed bubbles, 
which we anticipate, they do. If we define the stream function in the usual way, 

so that $' is the disturbance due to the bubble. Since the stream functions 
generated by a Stokeslet and a source are, respectively, 

i t  follows that $' has the representation 

where 
J -U 
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This last condition follows from the fact that the bubble is not a net source of 
fluid. Solution of the problem is equivalent to solution for the source strengths 
f and g and the bubble shape R(z). 

The fluid inside the bubble is assumed to be inviscid and the constant pressure 
there is arbitrarily assigned the value zero. Mathematically, the bubble then 
contains a vacuum, so that the boundary conditions on the interface are that the 
shear stress vanishes, that the normal stress is balanced by the force due to 
surface tension and that the interface is a stream surface. Hence 

(2.7) I Pns = 0, 

$ = O  
pnn = T(l /pl+ 1/p2) when r = sR(z)  (1x1 < a).  

Here T is the surface tension and p1 and p2 are the principal radii of curvature 
of the interface. Since the bubble is slender only because the surface tension is 
small, it can be anticipated that T and s are related. 

The components of the stress tensor are 

(2.8) 1 pw = - p + 2p avr/ar, 

Pzz = - p  + 2p av,/a% 

Prz = Pzr = ,4avr/aZ+avzlar). 

Consequently, if 8 is the angle between the normal to the bubble surface and 
the positive x axis, it  follows that the shear stress on the interface is 

pns = 2pcos8sin8 +p(sin2B-cos28) 

whereas the normal stress is 

av ar 1 (2 2) av 
pnn = - p + 2 p  cos28-z+sin28-r +2,ucos€JsinB -+- . (2.10) ( 

The velocity derivatives are to be evaluated on the interface, of course. 
The boundary conditions (2.7) will now be examined for the case when s is 

small. Consider the last one, namely $ = 0 on the interface. This is equivalent to 

(2.11) 

The integrals that appear here must be expanded for small e and we can do this 
provided that f and g are analytic, which is certainly true away from the ends. 
It can be anticipated that non-analyticity a t  the ends is unimportant provided 
that R vanishes in a roughly linear way, because as far as the integrals are con- 
cerned cR(z) is the small parameter. 

The method for asymptotically expanding integrals of this kind has been 
discussed by Handelsman & Keller (1967) in the context of potential theory and 
by Tillett (1970) in the context of Stokes flow. It consists of forming composite 
(uniformly valid) expansions of the integrand. Thus, anticipating the order of 
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magnitude off and g by writing! = €yo, g = s2qo, equation (2.11) may be approxi- 
mated by 

which, on differentiation, becomes 

(2.12) 

Equations (2.9) and (2.10) for the interface stresses may be simplified when 
t: is small since sin 8 - 1, cos 8 - - eR'(z). The shear-stress condition is then 

Now, 

a f ( E )  ( Z  - 2 )  [@R2(2) - 2 ( ~  - 2")2] 
[e2R2(z) + (2  - 2")2]5 

I n  order to see how these integrals behave, it is enough to observe that when e 
is small the first integrand is proportional to something that looks like a dif- 
ferentiated delta function, whereas the second is like the delta function itself. 
A more precise approach is possible of course, BS was previously indicated, but 
it is surely apparent that the first integral is at most O(s) whereas the second 
could be O( l ) ,  and 

a €2R2(2) - 2(z - z")2 

[€2B2(2) + (2 - z")"]" * -a 

On changing the variable by putting z"- z = eRt, we have 

(2.14) 

Actually, this last integral vanishes, so that it is not an O(1) quantity. Not- 
withstanding, it is important to notice that replacing the integration limits by 
k co is uniformly valid for small s if R vanishes a t  the ends like (a - IzI ), 

Also, 
1 a$' f (x") ( 2  - z") az" g(.q I& = [f?R2(Z) + ( Z  - z")2]8-j:a [e2R2((z) + (2 - 2)']%' 

The first of these integrals is at most O(s), so that 

Turning now to the equation 

(2.15) 
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we see that both of these integrals are O(e) and so contribute to the shear- 
stress relation (2.13). Integrating by parts gives 

J" dz" g(z") (2  - z") - 9(a) d - a )  
- a  [ E ~ R ~ ( z ) +  ( ~ - 2 ) 2 ] 4  - 3[e2R2+(z-a)2]8-3[~2R2+(~+a)2]~ 

Since both g and f can be expected to vanish at the ends (and this can be confirmed 
later) it  follows that 

The h a 1  term in pa$ is 

so that 

If all these expressions are substituted into the shear-stress condition (2.13), 
an equation relating f and g is obtained: 

0 N 3CR2R' + 4g0 R' - 49; R + 4f,R. (2.18) 

The expression for the normal stress, equation (2.iO), may be treated in a 
similar fashion and, in fact, all the required integral approximations have 
already been made. Thus, on the interface 

(2.19) 

An irrotational source generates no pressure disturbance, whereas a unit Stokeslet 
gives rise to a pressure 2pz/(z2 + r2$, eo on the bubble surface 

(2.20) 

which differs from p ,  by a term of, at most, O(e2).  Therefore the normal stress 
balance on the interface gives 

(2.21) 

where for pointed bubbles it has been recognized that the only important cum- 
ature is in planes of constant z .  It is clear from (2.21) that the surface tension T 
is of O(e), so that if we write T = e(LTi and eliminate go between (2.12) .and (2.21) 
the following equation for R is obtained: 

-pm -pC - 4 , ~  goIR2 N TIER, 

zR' + (pW/2pC + 1) R = - Tl2pC. (2.22) 
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In  general, this equation will not have an analytic solution in the interval 
[ - a ,  a],  but if p m  is chosen so that 

pm/2,uC i- 1 = - n, (2.23) 

where n is a,n even positive integer, the solution for R is 

R =.(p/2,uCn) [l- (z/a)"]. (2.24) 

It is no surprise that pm is determined as part of the solution, since the pressure 
inside the bubble was arbitrarily chosen to be zero. However, there is no obvious 
criterion for determining the parameter n. It is tempting to assume that n 
takes the smallest possible value, namely 2. The bubble is then the thickest 
possible for a given value of '1'1pCa and the pressure difference between the far 
field and the bubble interior is a minimum. Furthermore, the bubbles photo- 
graphed by both Taylor and Rumscheidt & Mason have shapes consistent with 
z2 behaviour, rather than the blunter shapes associated with larger choices of n. 
However, there is no known logically based principle justifying the choice n = 2, 
although since the bubbles for different n are more slender they might be expected 
to be unstable. Certainly the extension of Helmholtz's minimum dissipation 
principle to flows with free surfaces derived by Keller, Rubenfeld & Molyneux 
(1967) cannot be applied to the present problem, since their theory assumes that 
the free surface is fixed during the variation. 

The result (2.24) when n = 2 is actually given by Taylor (1964) as a limiting 
case of an analysis of drops of arbitrary viscosity. Unfortunately this analysis 
is not given and there is no clear statement of the assumptions that underly it. 
The only clues are an analysis of flow over a slender cone together witha statement 
that the drop analysis follows similar lines. Consequently it is not possible to 
decide how the contribution of the pressure to the normal stress was handled, 
and this appears to make an essential contribution to the non-uniqueness re- 
vealed in the present paper. It might be thought that Taylor's inclusion of drop 
viscosity resolves the non-uniqueness, but this is not true. The extension of the 
present analysis to include interior viscosity has been made, including the un- 
steady description of a bursting drop, and the results of this analysis are also 
non-unique. They are not included here since they form part of a separate dis- 
cussion of bursting drops? (Buckmaster 1972)) whereas here we are solely con- 
cerned with the question of points in drop interfaces. 

Once R has been determined, fo and go can be found: 

and these vanish at the ends, as was previously assumed. 
The bubble described by (2.24) has conical ends which, although consistant 

with the experimental evidence, contradicts the result of the appendix, where 

The ability of our model to predict bursting when drop viscosity is included, in agree- 
ment with experiment, provides strong evidence that the model is realistic. 
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it is shown that no local solution exists in the neighbourhood of a conical inter- 
face. In  order to clarify this apparent paradox, the second-order solution is 
considered in the next section. 

3. Second-order solution 

to the bubble problem can then be written in the form 
The surface tension should be regarded as a given O(s )  quantity. The solution 

R(z)  - R O ( ~ ) + s 2 R l ( z ) +  ..., 

Dependence on E other than that explicitly shown is permitted provided that 
it is much weaker than algebraic. It turns out, in fact, that logarithmic terms 
appear. The procedure for determining the quantities in (3.1) follows that of 8 2 
except that the various integrals must be asymptotically evaluated to a higher 
degree of accuracy, and this involves forming composite expansions for the 
integrands as described by Tillett (1970). The details are straightforward but 
lengthy and it is felt that presenting them in full is not justified. Instead, the 
h a 1  results needed to develop an equation for R,(z) will be presented. 

The condition that the bubble boundary is a stream surface leads to the result 

where 

Note that F ( z )  only depends on the leading solutions R,, fo and go. An explicit 
representation as a function of z is possible but will not be needed for our purposes. 

P - ( P m ) o  + C2(Pm)1 + E 2 4 Z ) ,  (3.3a) 

In  addition, we have the following results : 

(3-5) 

(3.6) 

(3.7a) 
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where 

(3 .7b )  

and 

(3 .7c )  

Also, (3 .8a )  

where 

(3 .8b )  

Now the normal stress balance on the interface, including terms of order e2) gives 

Note that the curvature in the azimuthal plane contributes to  O(e2). 
Collecting O(e2) terms in (3 .9 ) ,  we find that 

- (pJl  Rg + 2,u( - 2gl + 4go R,/Ro) = - 5?Rl + W )  Rg, ( 3 . 1 0 ~ )  
where 

"(2) = - T'Rb - T' RA2/2R, + a(z) -pRh2(3C + 4 g,,/R;) 

- ~ , u u [ P ( ~ ) - ~ ~ ~ ) l + ~ , u ~ ~ ~ - ~ f , / ~ ~ + 4 ~ ~ / ~ ~ ~ .  
If g ,  is eliminated between ( 3 . 2 a )  and (3 .10b)  an equation for R, is obtained: 

(3.1 1 a)  

where 
H ( z )  = R; 3 ( z )  + R; + 2,u d F / d z .  (3 .11b)  

H ( z )  is an even function of z and vanishes at the ends like ( a -  Iz()ln (u- 1x1) 
(contributed by d F / d z ) ,  so that Q ( z )  is integrable at the ends. It follows that 
for - a  < x < 0 

( 3 . 1 2 )  
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The solution for R, will be analytic at the origin only if the expansion of Q(s)/sn 
for small s does not contain a (11s) term. Since (pa), contributes to the coefficient 
of this term, a unique choice of (pa), will ensure that R, has an acceptable be- 
haviour. Thus no additional non-uniqueness is introduced a t  the second order. 
Once analyticity has been enforced, the evenness of H ensures that all the odd 
derivatives of R, vanish as z --f 0, so that, by reflexion, R, is properly defined 
over the whole interval [-a,  a]. 

Two things should be noticed about this solution. First, it  tells us nothing 
about n and second, since &(z)  N In (a-  121) at the ends, R,(z) behaves like 
(a-  Izl)ln(a- 121). Later terms in the expansion will contain higher powers of 
In (a-  lz l ) ,  so that since R,(z) behaves like (a -  121) this result suggests that in 
an O(e-ljez) neighbourhood of the ends the present solution is not valid. This 
interpretation resolves the apparent contradiction between $2,  which predicts 
conical ends, and the appendix, where conical ends are discredited. In  addition 
it is consistent with the experimental evidence since, in the thickest bubbles 
with pointed ends shown, O(e-l/cz) regions would be completely indistinguishable. 

The question of what happens in these exponentially small regions remains. 
Several possibilities were mentioned in $ 1 but it bears repeating that, in the 
absence of either a thorough analysis or experimental evidence, any discussion is 
necessarily speculative. However, if a steady solution in these tiny regions is 
possible, a local solution near the ends must exist. It is suggestive, then, that 
in the next section the first term in a local solution near a cusped end is derived. 
It does not folIow that such cusps are a reality, but they are a possibility. 

4. Local solution near a cusp 

figure 2) 

near the origin. We want to see whether we can derive a local solution of the 
Stokes equations satisfying all the conditions on the bubble surface, in addition 

Consider an interface between a, vacuum and a viscous fluid with shape (see 

z = Kra (0 < a < 1)  (4.1) 

FIGURE 2. Cusped end. 
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to being analytic outside the bubble. It is not obvious that such a solution exists, 
as the appendix shows for the special case a = 1. We shall not consider the case 
of arbitrary a (between the prescribed limits) since a solution has not been found 
for the general case. Matching difficulties involving logarithmic terms occur and 
it does not seem possible to  decide whether this is because a solution does not 
exist in the general ca.se or because a local solution of the appropriate form was 
not attempted. It does not seem probable that a local solution exists for all a. 
However, when a = I/n, where n is a positive integer, a local solution can be 
started and it is this solution that we shall describe. 

The normal stress on the interface - l / r  for small r which suggests that close 
to the interface the pressure has the form 

P ,-(I/rP,(q), 7 = ZIT". ( 4 4  

Now p satisfies Laplace's equation, which in terms of 7 and r is 

It follows thatPi(7) satisfies the equation 

a272P; + (2a + a2) qP; +Pi = 0, (4.3) 

which has general solution 
P, = A7-1'" + Bq-1'" In 7. (4.4) 

This is only acceptable when 7 > 0, so that different variables are needed once 
the angle q5 is large enough, (p, q5) being spherical polar co-ordinates. In  fact it 
seems reasonable to suppose that for fixed p the flow is unaware of the interface 
curvature except when $ is small. Consequently the spherical polar co-ordinates 
(p, q5) are appropriate in most of the region. The equation for p is then 

Now on the interfacep N I/r N z-lla, and for small q5, z is indistinguishable fromp, 
so the appropriate form of the outer solution is 

P P-1'aPo(q5). (4.6) 

(4.7) 

with general solution 
(4.8) 

where P, and Q, are Legendre functions. If I/a is an integer, P, is analytic at 
q5 = IT whereas Q, has logarithmic behaviour, so we must choose D = 0. Matching 
with the inner solution then yields the following description for the pressure: 

Substitution into (4.5) then yields the following equation for Po: 

sin q5Pb + cos $PA + (1/a) (I/a - I)  sin $Po = 0, 

Po = E P i / u - l ( ~ ~ ~  $1 +DQi/p.1(cos $), 

P i  (c/r)  (Y/m-l ' "*  
po - cK""p-"~Pl,u-l( cos q5) , 

where c is the value of pr  on the bubble surface. 

(4.9) 
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Let us now calculate the velocity field consistent with this pressure. In  the 
inner region the velocity components must have the form 

vr =f(r), vz = Ta-lg(7)* (4.10) 

It follows that the leading terms in the expansions of the velocity for small r 
satisfy the equations 

together with the continuity equation 

Av,-v,lr2 = 0, Av, = 0, 

av, ayav, v, i avs 
ar r a7 r raay  

o=---- +-+---, 
so that 

a2y2gf' + (2a - a2) yg' + (a - 1) 
(4.11) 

a"r"f"+aZyf'-f = 0. 

The general solution satisfying continuity is then 

(4.12) 

where S and R are constants. Additional restraints are imposed on this inner 
solution by the boundary conditions on the interface. Thus the tangency con- 
dition 

[v,/v,],=~ = aKra-l 
is satisfied only if 

R = (-) l+a K-2/aS. 
1-a 

Also, the normal stress at the interface is 

where T is the surface tension, whence 

(4.13) 

(4.14) 

Finally the shear stress at the interface is 

this is identically satisfied by the function gfy). Thus the complete inner solution, 
satisfying all conditions on the interface to leading order, is 

(4.15) i 
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This is to be matched with the outer solution which can be described in terms 
of the stream function: 

1 a$ 1 ak 
P P ~ p i n $ a # ,  '$=--- p sin # ap ' 
v =-- 

where 

The most general solution analytic a t  4 = 7~ is 

$ = p3-I'"(L sin2 #P;/a-3(cos @ j + M sin2 q5P~ia-l(cos 4)). (4.16) 

Matching of both vr and v, with the inner solution is accomplished if 

Sa 
- I-a = LP;,a-3( 1) + MPja-,( I ) ,  (4.17) 

and in addition, since the pressure and velocities are related by the momentum 
equation, 

(4.18) 

These conditions determine L and M in terms of a, K and S, so the complete 
local solution, to first order, depends on these three undetermined parameters. 
We have suggested that Ifa is a positive integer, so that this aspect of the non- 
uniqueness is reminiscent of the non-uniqueness in 8 2 (see equation (2.24)). Also, 
K is a measure of the thickness ratio of the bubble and since this is determined by 
the strain in the far field, which a local analysis cannot be aware of, it is no 
surprise that this appears as an undefined parameter. It is less clear why there 
is a third unknown parameter, S. However, an examination of the solution for 
the pressure over the major portion of the bubble given by (3.3) shows that this 
is not algebraically singular as the ends are approached; the singular part of 
the normal stress is derived entirely from the velocity field. If this result is also 
true at the ends then S is determined by requiring the first of (4.15) to vanish. 

It should not be thought that the solution described here is appropriate for all 
integer values of l /a.  The radial velocity in the outer flow field is 

vup = pl-l'a(2L cos #P;,,-3(c~~ q5) - L sin2 #PiI,-3(cos q5) 
+ 2M cos #P;/a-l(cos 4) - Msin2 q5P;/a-l(cos $)}. 

Therefore if l / a  is odd, the value of vP for some q5 in (0, $ 7 ~ )  is the same as that at 
Q + &rand so does not correspond to flow off the end of the bubble.? Consequently 
only solutions for even values of ifa are acceptable, and the analogy with the 
earlier sections is even more striking. Remember, however, that it was never 
shown that solutions for non-integral values of lfa do not exist. 

The solution obtained here is, of course, singular a t  the tip. This is not physically 
acceptable but there seems to be no reason why the difficulty could not be resolved 
on a molecular scale. That is, just as a shock wave is only a discontinuity on 
a continuum scale, so presumably is the present flow only singular on such a scale. 
Thus the singularity is not an adequate reason for dismissing the present cusped 
solutions in favour of a rounded solution. The regions involved are apparently 
too small for this question to be resolved by experiment. 

t I am grateful to  Professor Lu Ting for pointing this out. 
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5. Concluding remarks 
In view of our inability to model faithfully the experimental situation, it 

seems worth while to list the essential qualitative features observed by both 
Taylor and Rumscheidt & Mason and compare these with the predictions of the 
axisymmetric model. They found that relatively inviscid drops, if strained suf- 
ficiently, exhibited pointed ends and that these dropssurvived up to themaximum 
rates of strain attainable in the apparatus. On the other hand, viscous drops, 
whilst also displaying pointed ends, burst if the straining was too great. The 
present work deals only with inviscid drops, and in $ 2  we saw that pointed bubbles 
are predicted, in the large. Furthermore, solutions exist for all values of F/,uCu. 
These results agree with the experimental observations of relatively inviscid 
drops. Furthermore, the author has discussed viscous drops (Buckmaster 1972) 
using the axisymmetric model, and has shown that pointed solutions exist (in the 
large) and burst if the straining is too great, in agreement with experiment. There 
is good reason to believe, therefore, that the axisymmetric model retains the 
essential physics. 

This work was supported by the Office of Naval Research under contract 
N00014-67-A-0467-0021. 

Appendix. Failure of a local conical solution 
It is to be expected that the solution for $ can localIy be represented by a sum 

of terms separable in p and $. Of particular interest is the term which provides 
the normal stress necessary to balance that associated with the surface tension 
at the interface. This term is 

$ = P2T(#) .  (A 1) 

The slow-flow equations hence yield the following general solution analytic 
exterior tQ the bubble: 

$ = p2[a cos q5 -I- b + c sin2 $1, (A 2 )  

where u, b and c are constants. Since $ must be a constant when Q = n, it folloTvs 

a = b, 
that 

so that there are only two undetermined constants left to satisfy the three 
conditions on the interface. 

The pressure associated with the velocity field is 

$I = 2UalP9 (A 4) 

from which it follows that the stress 

(u cos + + b).  (A 5 )  

Also, 
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In  view of (A 3) there is no way we can ensure that the shear stress vanishes at 
the interface, and even if we could the normal stress would then vanish also, 
which is not acceptable. We conclude that a pointed bubble is not conical. 
Taylor (1964), in his approximate analysis of flow over a slender cone, nowhere 
considered the shear balance, which is an essential part of the present argument. 
Consequently his work does not reveal the inability of the point to remain truly 
conical. A statement is made that more careful considerations suggest the in- 
adequacy of a conical point, but no details are given. 
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